Добро пожаловать в блог! Здесь вы можете поглубже познакомиться с математикой, порешать задания ГИА и ЕГЭ, а в перерывах почитать стихи и посмотреть чудесные цветы. Удачи Вам!

четверг, 4 февраля 2016 г.

Определить температуру звёзд

В публикуемой серии задач из открытого банка ФИПИ с физическим содержанием (задания под номером 10 на профильном ЕГЭ) необходимо уметь выполнять действия с числами, записанными в стандартном виде, находить корни четвёртой степени (в том числе методом подбора).


Задание №41793  Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/81020 м2, а мощность её излучения равна 2,91841027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Решение. Подставляем все имеющиеся данные в формулу
2,91841027  = 5,710−8 1/81020  T4, разделив обе части уравнения на 5,7 получаем (с учётом того, что 10−8 1020 = 1012)
0,5121027  = 1/81012  T4, умножив обе части уравнения на 8 получаем
4,0961027  = 1012  T4, делим обе части уравнения на 1012
T4 = 4,0961015 или T4 = 40961012 извлекая корень четвёртой степени получаем
T = 8103 = 8000.
Ответ 8000.

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/21020 м2, а мощность её излучения равна 3,69361027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/1281021 м2, а мощность её излучения равна 1,141026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/2161021 м2, а мощность её излучения равна 3,421026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/81020 м2, а мощность её излучения равна 1,8241026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/21020 м2, а мощность её излучения равна 7,2961026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/361021 м2, а мощность её излучения равна 2,0521027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/241021 м2, а мощность её излучения равна 3,0781027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/51020 м2, а мощность её излучения равна 7,1251026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/10241021 м2, а мощность её излучения равна 2,281026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/71020 м2, а мощность её излучения равна 1,95511027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/321021 м2, а мощность её излучения равна 7,2961027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/541021 м2, а мощность её излучения равна 1,3681027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/1081021 м2, а мощность её излучения равна 6,841026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/20481021 м2, а мощность её излучения равна 1,141026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/61020 м2, а мощность её излучения равна 1,23121027 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/40961022 м2, а мощность её излучения равна 5,71026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/31020 м2, а мощность её излучения равна 1,5391026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/1621021 м2, а мощность её излучения равна 4,561026 Вт. Найдите температуру этой звезды в градусах Кельвина.

Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/91020 м2, а мощность её излучения равна 8,2081026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/91020 м2, а мощность её излучения равна 5,131025 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/41020 м2, а мощность её излучения равна 3,6481026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/2561021 м2, а мощность её излучения равна 9,121026 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/321020 м2, а мощность её излучения равна 4,561025 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/1251020 м2, а мощность её излучения равна 2,851025 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/271020 м2, а мощность её излучения равна 1,711025 Вт. Найдите температуру этой звезды в градусах Кельвина.
Для определения эффективной температуры звёзд используют закон Стефана–Больцмана, согласно которому P=σST4, где P — мощность излучения звезды, σ=5,710−8 Вт/(м2К4) — постоянная, S — площадь поверхности звезды, а T — температура. Известно, что площадь поверхности некоторой звезды равна 1/811021 м2, а мощность её излучения равна 9,121026 Вт. Найдите температуру этой звезды в градусах Кельвина.

Комментариев нет:

Отправить комментарий